News Solartex
Advertisement
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA
No Result
View All Result
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA
No Result
View All Result
News Solartex
No Result
View All Result
Home Solar Panels

Stability of perovskite solar cells boosted with innovative protective layer

admin by admin
November 22, 2024
in Solar Panels
0
A blueprint for affordable solar cells to power Saudi Arabia and beyond
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter

Stability of perovskite solar cells boosted with innovative protective layer

by Clarence Oxford

Los Angeles CA (SPX) Nov 22, 2024






Scientists at Northwestern University have unveiled a new protective coating that dramatically improves the longevity of perovskite solar cells, a key step toward making these cells viable for real-world applications.



Perovskite solar cells offer greater efficiency and lower costs compared to traditional silicon-based cells. However, their lack of durability has historically hindered widespread adoption. Conventional coatings using ammonium-based compounds, while effective at enhancing efficiency, degrade quickly under environmental stresses such as heat and moisture.



To address this limitation, the research team introduced an amidinium-based protective layer, which outperformed ammonium coatings by a significant margin. Laboratory tests revealed that this innovative layer is 10 times more resistant to decomposition. Moreover, it tripled the cells’ T90 lifetime – the duration before a cell’s efficiency drops to 90% of its initial level under extreme conditions.



“The field has been working on the stability of perovskite solar cells for a long time,” said Bin Chen, a co-leader of the study. “So far, most reports focus on improving the stability of the perovskite material itself, overlooking the protective layers. By improving the protective layer, we were able to enhance the solar cells’ overall performance.”



Published in ‘Science’, the study marks a critical advancement in perovskite solar cell technology.



“This work addresses one of the critical barriers to widespread adoption of perovskite solar cells – stability under real-world conditions,” explained Mercouri Kanatzidis, another study co-leader. “By chemically reinforcing the protective layers, we’ve significantly advanced the durability of these cells without compromising their exceptional efficiency, bringing us closer to a practical, low-cost alternative to silicon-based photovoltaics.”



Bridging the Durability Gap

Although silicon remains the most widely used material for solar cells due to its reliability and durability, it is costly to produce and nearing its maximum efficiency potential. Researchers have turned to perovskites as a more affordable, higher-efficiency alternative. However, perovskite’s limited lifespan under sunlight, temperature fluctuations, and moisture has remained a major challenge.



The Northwestern team tackled this issue by using amidinium ligands, stable molecules capable of interacting with perovskites to enhance protection and prevent defects. Compared to ammonium-based molecules, amidinium compounds are more structurally resilient under harsh conditions.



“State-of-the-art perovskite solar cells typically have ammonium ligands as a passivation layer,” said Yi Yang, the study’s first author. “But ammonium tends to break down under thermal stress. We did some chemistry to convert the unstable ammonium into a more stable amidinium.”



This transformation, achieved through a chemical process called amidination, replaced the ammonium group with amidinium, preventing degradation and improving thermal stability.



Record-Setting Performance

With this innovation, the perovskite solar cells achieved an efficiency of 26.3%, converting 26.3% of sunlight into usable electricity. Additionally, the amidinium-coated cells maintained 90% of their initial efficiency after 1,100 hours of rigorous testing under heat and light, demonstrating their vastly improved durability.



These results build on previous advancements from Northwestern’s research team. Over the past two years, the Sargent lab has achieved record-breaking energy efficiency, introduced inverted perovskite structures, and incorporated liquid crystals to enhance cell performance.



“Perovskite-based solar cells have the potential to contribute to the decarbonization of the electricity supply once we finalize their design, achieve the union of performance and durability, and scale the devices,” said Ted Sargent, co-leader of the study. “The primary barrier to the commercialization of perovskite solar cells is their long-term stability. But due to its multi-decade head start, silicon still has an advantage in some areas, including stability. We are working to close that gap.”



The study supports the Trienens Institute’s Generate pillar, which focuses on advancing solar energy production through innovative technologies. By improving perovskite solar cells, Northwestern aims to develop the next generation of efficient, cost-effective solar solutions.



Research Report:Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells


Related Links

Northwestern University

All About Solar Energy at SolarDaily.com



Source link

Previous Post

Should I Install Multiple Split Systems or Ducted Heating and Cooling?

Next Post

A nonflammable battery to power a safer, decarbonized future

admin

admin

Next Post
Bipartisan bill addressing lithium-ion battery fires awaits congressional action

A nonflammable battery to power a safer, decarbonized future

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected test

  • 23.9k Followers
  • 99 Subscribers
  • Trending
  • Comments
  • Latest
AIKO vs. Trina Solar Panels

AIKO vs. Trina Solar Panels

May 15, 2024
Solar Battery Covers | Cover My Inverter

Solar Battery Covers | Cover My Inverter

October 1, 2023
ADT Solar to close 22 of 38 branches

ADT Solar to close 22 of 38 branches

November 2, 2023
Adverse Weather Conditions Solar Panels

Adverse Weather Conditions Solar Panels

October 1, 2023
How many Solar Panels Do I Need?

How many Solar Panels Do I Need?

1
The 5 Best Solar Panels For Your Home or Business

The 5 Best Solar Panels For Your Home or Business

0
The Truth About German Made Solar Panels – Don’t Fall For The Scam!

The Truth About German Made Solar Panels – Don’t Fall For The Scam!

0
Electric Element vs Heat Pump Calculator – MC Electrical

Electric Element vs Heat Pump Calculator – MC Electrical

0
RWE contracts SOLARCYCLE for recycling decommissioned solar panels

RWE contracts SOLARCYCLE for recycling decommissioned solar panels

May 13, 2025
Trina to unveil 10-MWh ESS to North American market this summer

Trina Storage’s Elementa 2 Elevate system completes UL assessments

May 13, 2025
Silfab sells off $110 million of 45X manufacturing tax credits

Silfab sells off $110 million of 45X manufacturing tax credits

May 13, 2025
RWE begins construction on nearly 100-MW Ohio solar project

RWE begins construction on nearly 100-MW Ohio solar project

May 13, 2025

Recent News

RWE contracts SOLARCYCLE for recycling decommissioned solar panels

RWE contracts SOLARCYCLE for recycling decommissioned solar panels

May 13, 2025
Trina to unveil 10-MWh ESS to North American market this summer

Trina Storage’s Elementa 2 Elevate system completes UL assessments

May 13, 2025
Silfab sells off $110 million of 45X manufacturing tax credits

Silfab sells off $110 million of 45X manufacturing tax credits

May 13, 2025
RWE begins construction on nearly 100-MW Ohio solar project

RWE begins construction on nearly 100-MW Ohio solar project

May 13, 2025
News Solartex

©2024 SOLARTEX USA LLC

Navigate Site

  • Home
  • Categories
  • Privacy Policy
  • Term of Use
  • Contact Us

Follow Us

No Result
View All Result
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA

©2024 SOLARTEX USA LLC

Cleantalk Pixel