News Solartex
Advertisement
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA
No Result
View All Result
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA
No Result
View All Result
News Solartex
No Result
View All Result
Home Solar Panels

Decarbonizing heavy industry with thermal batteries

admin by admin
November 27, 2024
in Solar Panels
0
Bipartisan bill addressing lithium-ion battery fires awaits congressional action
0
SHARES
2
VIEWS
Share on FacebookShare on Twitter

Decarbonizing heavy industry with thermal batteries

by Zach Winn | MIT News

Boston MA (SPX) Nov 27, 2024






Whether you’re manufacturing cement, steel, chemicals, or paper, you need a large amount of heat. Almost without exception, manufacturers around the world create that heat by burning fossil fuels.



In an effort to clean up the industrial sector, some startups are changing manufacturing processes for specific materials. Some are even changing the materials themselves. Daniel Stack SM ’17, PhD ’21 is trying to address industrial emissions across the board by replacing the heat source.



Since coming to MIT in 2014, Stack has worked to develop thermal batteries that use electricity to heat up a conductive version of ceramic firebricks, which have been used as heat stores and insulators for centuries. In 2021, Stack co-founded Electrified Thermal Solutions, which has since demonstrated that its firebricks can store heat efficiently for hours and discharge it by heating air or gas up to 3,272 degrees Fahrenheit – hot enough to power the most demanding industrial applications.



Achieving temperatures north of 3,000 F represents a breakthrough for the electric heating industry, as it enables some of the world’s hardest-to-decarbonize sectors to utilize renewable energy for the first time. It also unlocks a new, low-cost model for using electricity when it’s at its cheapest and cleanest.



“We have a global perspective at Electrified Thermal, but in the U.S. over the last five years, we’ve seen an incredible opportunity emerge in energy prices that favors flexible offtake of electricity,” Stack says. “Throughout the middle of the country, especially in the wind belt, electricity prices in many places are negative for more than 20 percent of the year, and the trend toward decreasing electricity pricing during off-peak hours is a nationwide phenomenon. Technologies like our Joule Hive Thermal Battery will enable us to access this inexpensive, clean electricity and compete head to head with fossil fuels on price for industrial heating needs, without even factoring in the positive climate impact.”



A new approach to an old technology

Stack’s research plans changed quickly when he joined MIT’s Department of Nuclear Science and Engineering as a master’s student in 2014.



“I went to MIT excited to work on the next generation of nuclear reactors, but what I focused on almost from day one was how to heat up bricks,” Stack says. “It wasn’t what I expected, but when I talked to my advisor, [Principal Research Scientist] Charles Forsberg, about energy storage and why it was valuable to not just nuclear power but the entire energy transition, I realized there was no project I would rather work on.”



Firebricks are ubiquitous, inexpensive clay bricks that have been used for millennia in fireplaces and ovens. In 2017, Forsberg and Stack co-authored a paper showing firebricks’ potential to store heat from renewable resources, but the system still used electric resistance heaters – like the metal coils in toasters and space heaters – which limited its temperature output.



For his doctoral work, Stack worked with Forsberg to make firebricks that were electrically conductive, replacing the resistance heaters so the bricks produced the heat directly.



“Electric heaters are your biggest limiter: They burn out too fast, they break down, they don’t get hot enough,” Stack explains. “The idea was to skip the heaters because firebricks themselves are really cheap, abundant materials that can go to flame-like temperatures and hang out there for days.”



Forsberg and Stacks were able to create conductive firebricks by tweaking the chemical composition of traditional firebricks. Electrified Thermal’s bricks are 98 percent similar to existing firebricks and are produced using the same processes, allowing existing manufacturers to make them inexpensively.



Toward the end of his PhD program, Stack realized the invention could be commercialized. He started taking classes at the MIT Sloan School of Management and spending time at the Martin Trust Center for MIT Entrepreneurship. He also entered the StartMIT program and the I-Corps program, and received support from the U.S. Department of Energy and MIT’s Venture Mentoring Service (VMS).



“Through the Boston ecosystem, the MIT ecosystem, and with help from the Department of Energy, we were able to launch this from the lab at MIT,” Stack says. “What we spun out was an electrically conductive firebrick, or what we refer to as an e-Brick.”



Electrified Thermal contains its firebrick arrays in insulated, off-the-shelf metal boxes. Although the system is highly configurable depending on the end use, the company’s standard system can collect and release about 5 megawatts of energy and store about 25 megawatt-hours.



The company has demonstrated its system’s ability to produce high temperatures and has been cycling its system at its headquarters in Medford, Massachusetts. That work has collectively earned Electrified Thermal $40 million from various the Department of Energy offices to scale the technology and work with manufacturers.



“Compared to other electric heating, we can run hotter and last longer than any other solution on the market,” Stack says. “That means replacing fossil fuels at a lot of industrial sites that couldn’t otherwise decarbonize.”



Scaling to solve a global problem

Electrified Thermal is engaging with hundreds of industrial companies, including manufacturers of cement, steel, glass, basic and specialty chemicals, food and beverage, and pulp and paper.



“The industrial heating challenge affects everyone under the sun,” Stack says. “They all have fundamentally the same problem, which is getting their heat in a way that is affordable and zero carbon for the energy transition.”



The company is currently building a megawatt-scale commercial version of its system, which it expects to be operational in the next seven months.



“Next year will be a huge proof point to the industry,” Stack says. “We’ll be using the commercial system to showcase a variety of operating points that customers need to see, and we’re hoping to be running systems on customer sites by the end of the year. It’ll be a huge achievement and a first for electric heating because no other solution in the market can put out the kind of temperatures that we can put out.”



By working with manufacturers to produce its firebricks and casings, Electrified Thermal hopes to be able to deploy its systems rapidly and at low cost across a massive industry.



“From the very beginning, we engineered these e-bricks to be rapidly scalable and rapidly producible within existing supply chains and manufacturing processes,” Stack says. “If you want to decarbonize heavy industry, there will be no cheaper way than turning electricity into heat from zero-carbon electricity assets. We’re seeking to be the premier technology that unlocks those capabilities, with double digit percentages of global energy flowing through our system as we accomplish the energy transition.”


Related Links

Electrified Thermal Solutions

Powering The World in the 21st Century at Energy-Daily.com



Source link

Previous Post

Ipsun Solar starts work on 1.58-MW storage unit rooftop solar portfolio

Next Post

Using sunlight to recycle black plastics

admin

admin

Next Post
Using sunlight to recycle black plastics

Using sunlight to recycle black plastics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected test

  • 23.9k Followers
  • 99 Subscribers
  • Trending
  • Comments
  • Latest
AIKO vs. Trina Solar Panels

AIKO vs. Trina Solar Panels

May 15, 2024
Solar Battery Covers | Cover My Inverter

Solar Battery Covers | Cover My Inverter

October 1, 2023
ADT Solar to close 22 of 38 branches

ADT Solar to close 22 of 38 branches

November 2, 2023
Adverse Weather Conditions Solar Panels

Adverse Weather Conditions Solar Panels

October 1, 2023
How many Solar Panels Do I Need?

How many Solar Panels Do I Need?

1
The 5 Best Solar Panels For Your Home or Business

The 5 Best Solar Panels For Your Home or Business

0
The Truth About German Made Solar Panels – Don’t Fall For The Scam!

The Truth About German Made Solar Panels – Don’t Fall For The Scam!

0
Electric Element vs Heat Pump Calculator – MC Electrical

Electric Element vs Heat Pump Calculator – MC Electrical

0
Climate Access Fund flips switch on community solar project at Baltimore public school

Climate Access Fund flips switch on community solar project at Baltimore public school

May 14, 2025
New Massachusetts bill could cut non-resi solar net metering

New Massachusetts bill could cut non-resi solar net metering

May 14, 2025
Anza launches energy storage supply chain analytics platform

Anza launches energy storage supply chain analytics platform

May 13, 2025
Transport company launches Solar Logistics Solutions

Transport company launches Solar Logistics Solutions

May 13, 2025

Recent News

Climate Access Fund flips switch on community solar project at Baltimore public school

Climate Access Fund flips switch on community solar project at Baltimore public school

May 14, 2025
New Massachusetts bill could cut non-resi solar net metering

New Massachusetts bill could cut non-resi solar net metering

May 14, 2025
Anza launches energy storage supply chain analytics platform

Anza launches energy storage supply chain analytics platform

May 13, 2025
Transport company launches Solar Logistics Solutions

Transport company launches Solar Logistics Solutions

May 13, 2025
News Solartex

©2024 SOLARTEX USA LLC

Navigate Site

  • Home
  • Categories
  • Privacy Policy
  • Term of Use
  • Contact Us

Follow Us

No Result
View All Result
  • Home
  • CATEGORIES
    • Solar Panels
    • Solar Installation
    • Residential Solar
    • Commercial Solar
    • Solar Contractors
    • Solar Batteries
    • Solar Inverters
    • Solar Lightening
    • Solar Pumps
    • Accessories
  • MORE
    • CONTACT US
    • SOLARTEX USA

©2024 SOLARTEX USA LLC

Cleantalk Pixel