New solar material advances green hydrogen production
by Simon Mansfield
Sydney, Australia (SPX) Dec 20, 2024
Researchers in nano-scale chemistry have made a significant stride in advancing the sustainable and efficient production of hydrogen from water using solar energy.
A collaborative international study led by Flinders University, with partners in South Australia, the US, and Germany, has identified a novel solar cell process that could play a crucial role in photocatalytic water splitting for green hydrogen production.
The research introduces a new class of kinetically stable ‘core and shell Sn(II)-perovskite’ oxide solar material. Paired with a catalyst developed by US researchers under Professor Paul Maggard, this material shows potential as a catalyst for the essential oxygen evolution reaction, a key step in generating pollution-free hydrogen energy.
The findings, published in The Journal of Physical Chemistry C, offer new insights into the development of carbon-free hydrogen technologies, leveraging renewable and greenhouse-gas-free power sources for high-performing and cost-effective electrolysis processes.
“This latest study is an important step forwards in understanding how these tin compounds can be stabilised and effective in water,” said Professor Gunther Andersson, lead author from the Flinders Institute for Nanoscale Science and Technology.
Professor Paul Maggard, from Baylor University, added, “Our reported material points to a novel chemical strategy for absorbing the broad energy range of sunlight and using it to drive fuel-producing reactions at its surfaces.”
Tin and oxygen compounds like those used in the study are already applied in diverse fields such as catalysis, diagnostic imaging, and therapeutic drugs. However, Sn(II) compounds are typically reactive with water and dioxygen, limiting their technological potential.
Global solar photovoltaic research continues to focus on developing cost-effective, high-performance perovskite-based systems as alternatives to conventional silicon and other existing technologies.
Hydrogen, often touted as a clean fuel, can be produced through various processes, including electrolysis powered by renewable energy, thermochemical water splitting using concentrated solar power, or waste heat from nuclear reactors. While fossil fuels and biomass can also generate hydrogen, the environmental and energy efficiency depends largely on the production method.
Solar-driven hydrogen production, which uses light to initiate the process, is emerging as a promising alternative for industrial-scale hydrogen generation.
This study builds on earlier research led by Professor Maggard, initially at North Carolina State University and now at Baylor University, and includes contributions from University of Adelaide experts such as Professor Greg Metha and collaborators from Universitat Munster in Germany. Professor Metha’s work explores the photocatalytic activity of metal clusters on oxide surfaces for reactor technologies.
Research Report:Chemical and Valence Electron Structure of the Core and Shell of Sn(II)-Perovskite Oxide Nanoshells
Related Links
Flinders University
All About Solar Energy at SolarDaily.com