Pioneering advancements in solid-state battery technology for energy storage
by Riko Seibo
Tokyo, Japan (SPX) Dec 23, 2024
Recent strides in solid-state battery technology are setting the stage for a transformative era in energy storage. These advancements hold promise for revolutionizing electric vehicles and renewable energy systems through improved performance and safety. A focus on electrolyte innovation has been key to this progress, enabling the development of high-performance all-solid-state batteries (ASSBs).
A new review paper provides a comprehensive summary of advancements in inorganic solid electrolytes (ISEs), materials that are central to ASSBs. Researchers examined the roles of oxides, sulfides, hydroborates, antiperovskites, and halides not only as electrolytes but also as catholytes and interface layers, which collectively enhance battery performance and safety.
“We highlighted the recent breakthroughs in synthesizing these materials, honing our attention on the innovative techniques that enable the precise tuning of their properties to meet the demanding requirements of ASSBs,” said Eric Jianfeng Cheng, associate professor at Tohoku University’s Advanced Institute for Materials Research (AIMR). “Precise tuning is crucial for developing batteries with higher energy densities, longer life cycles, and better safety profiles than conventional liquid-based batteries.”
The review also delves into the electrochemical properties of ISEs, including ionic conductivity, stability, and electrode compatibility. Researchers evaluated current ASSB models and suggested emerging strategies that could drive the next generation of energy storage solutions.
However, challenges persist in the development of ASSBs, notably the limited compatibility between ISEs and electrodes, which can trigger interfacial reactions. Addressing these compatibility issues is vital to improving battery efficiency and longevity. The review outlines these challenges and provides insights into efforts aimed at overcoming them.
“Our comprehensive review underscores the importance of continued research and development in the field of solid-state batteries. By developing new materials, improving synthesis methods, and overcoming compatibility issues, current efforts are driving innovation toward practical ASSBs that could transform how we store and use energy,” Cheng added.
Research Report:Inorganic solid electrolytes for all-solid-state lithium/sodium-ion batteries: recent developments and applications
Related Links
Tohoku University
Powering The World in the 21st Century at Energy-Daily.com