University of Maryland to develop renewable energy systems for ocean monitoring systems
by Clarence Oxford
Los Angeles CA (SPX) Jan 03, 2025
University of Maryland researcher Stephanie Lansing has been awarded $7.8 million from the Defense Advanced Research Projects Agency (DARPA) to spearhead the development of a biologically powered energy system aimed at transforming power generation for ocean monitoring devices worldwide.
Current ocean monitoring devices, essential for understanding marine ecosystems, tracking climate change, and maintaining national security, rely heavily on lithium-ion batteries or extensive underwater cables for power. Lansing’s groundbreaking project aims to replace these conventional systems by harnessing microorganisms and specialized bacteria to fuel a marine microbial energy source capable of delivering a steady 10-watt output for over a year.
“This unique collaboration of interdisciplinary experts will produce a bioinspired system that has game-changing potential to provide direct electric power to improve sensing capabilities while protecting and limiting the impact to the environment through use of this unique bioenergy system,” explained Lansing, a professor in UMD’s Department of Environmental Science and Technology.
The system, known as the Persistent Oceanographic Device Power (PODPower), employs a sophisticated mechanism that gathers ocean microbes and organic material into a specialized fermentation chamber. Bacteria in this chamber pre-process the material into an efficient “fuel” for other bacteria colonizing the electrodes of the microbial fuel cell, generating usable electricity.
Key design features include a fish-gill-inspired collection net, a corkscrew-shaped auger for organic matter transport, and a dual cathode system to enhance energy output. These innovations are expected to overcome limitations of earlier microbial fuel cell technologies.
Funded under DARPA’s BioLogical Undersea Energy (BLUE) program, PODPower aligns with initiatives to exploit ocean biomass for sustainable power solutions. Beyond the $7.8 million allocated for Phase 1 development through 2026, an additional $3.4 million may be granted for Phase 2, aimed at generating 100 watts of power and deploying systems across multiple environments.
The project involves collaboration with experts from Battelle, George Washington University, Harvard University, UMD Baltimore County’s Institute of Marine and Environmental Technology (IMET), James Madison University, Johns Hopkins University, University of Delaware, and Yokogawa Corporation of America.
Related Links
University of Maryland
All About Solar Energy at SolarDaily.com